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Abstract. We have investigated the mesoscopic transport through the system with a quantum dot (QD)
side-coupled to a toroidal carbon nanotube (TCN) in the presence of spin-flip effect. The coupled QD
contributes to the mesoscopic transport significantly through adjusting the gate voltage and Zeeman field
applied to the QD. The compound TCN-QD microstructure is related to the separate subsystems, the
applied external magnetic fields, as well as the combination of subsystems. The spin current component
Is

z is independent on time, while the spin current components Is
x and Is

y evolve with time sinusoidally. The
rotating magnetic field induces novel levels due to the spin splitting and photon absorption procedures. The
suppression and enhancement of resonant peaks, and semiconductor-metal phase transition are observed
by studying the differential conductance through tuning the source-drain bias and photon energy. The
magnetic flux induces Aharonov-Bohm oscillation, and it controls the tunnelling behavior due to adjusting
the flux. The Fano type of multi-resonant behaviors are displayed in the conductance structures by adjusting
the gate voltage Vg and the Zeeman field B2 applied to the QD.

PACS. 85.35.-p Nanoelectronic devices – 73.23.-b Electronic transport in mesoscopic systems – 72.25.Mk
Spin transport through interfaces – 73.21.La Quantum dots

1 Introduction

The research on electron transport through hybrid device
structures is presented for the new stage of investigation,
in which the carbon devices are coupled to different ma-
terials [1–3]. The toroidal carbon nanotube (TCN) is a
form of carbon structure, which is a torus structure by
bending the carbon tube such that the two edges are
connected [4–7]. The TCN is formed by rolling a finite
graphite sheet from the origin to the vectors Rx and
Ry simultaneously, and it is denoted by (m1, m2; p1, p2)
as convention. Two kinds of TCN with highly symmet-
ric structures are armchair (m, m;−p, p) TCN and zigzag
(m, 0;−p, 2p) TCN. The armchair TCN possesses the sym-
metry with armchair structure along the transverse direc-
tion and zigzag structure along the longitudinal direction.
The zigzag TCN has the structure in both of the direc-
tions being zigzag. In the absence of magnetic flux, the
armchair TCN is a metal as p = 3ν (type I TCN), while it
is a semiconductor with narrow energy gap as p = 3ν ± 1
(type II TCN) where ν is an integer. For the zigzag TCN
in the absence of magnetic flux, there exists large energy
gap as m �= 3ν (type III TCN). There is no technique
question for the fabrication of TCNs from single-wall car-
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bon nanotubes (SWCNs) [7,8]. The combination of termi-
nal structures and TCN together forms coupled density
of state (DOS), and the tunnelling current is determined
by the detailed constructions [9–11]. One of the most im-
portant applications of carbon nanotubes is to serve the
molecular samples as a kind of spin devices. For instance,
the spin coherent field effect transistor proposed associ-
ated with the spin precession due to the spin-orbit cou-
pling in narrow-gap semiconductors [12]. The experiments
on the control and manipulation of spin made it possible
for the application of spintronic nano-devices [13,14]. The
theoretical works on the spin-current circuit and gener-
ator phenomena, such as spin-battery proposals [15,16],
and the spin field effect transistor (SFET) [17] are also
proposed to develop the spintronics. Recently, we have
made the contributions to the development of spintronics
in the aspects for investigating the spin-flip mesoscopic
transport through a quantum dot (QD) responded by a
rotating and an oscillating magnetic fields [18]; the spin
and charge currents tunnelling through a coupled TCN
system in the presence of rotating magnetic field and an
Aharonov-Bohm magnetic flux [19]; the system consisting
of a central QD and two SWCN leads [20]. Many novel
properties are revealed relating to the material structures.

As a QD is coupled to a mesoscopic ring, the charge of
a single electron transferring from one mesoscopic region
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to another can alter the mesoscopic properties drastically.
The polarized charge transfer in an external capacitive
circuit causes the changing of potential landscape, and it
changes the phase-sensitive properties of the mesoscopic
sample [21]. It is significant to study the transport be-
haviors of electronic charge and spin tunnelling through
the mesoscopic system with a quantum dot coupled to a
ring-like sample. In this paper, we investigate the meso-
scopic transport through a coupled TCN-QD system in
the presence of spin-flip effect. A QD is side-coupled with
a TCN, and the TCN is connected to two normal metal
leads. A rotating magnetic field is applied to the TCN
to induce spin-dependent tunnelling, which acts as spin
generator in the TCN. An static magnetic field is applied
to produce a magnetic flux threaded through the TCN.
This magnetic flux induces Aharonov-Bohm oscillation,
and it controls the tunnelling behavior due to adjusting
the flux. We consider the system of TCN with the diame-
ter ratio of the tube to the ring as dt/Dt � 1. The QD is
applied with gate voltage, and the terminals are applied
with source-drain bias voltage. The detailed structure of
compound TCN-QD dedicates important contribution to
the spin-flip mesoscopic transport.

2 Hamiltonian and formalism

We consider the system that the TCN is exposed to
the rotating magnetic field B0(t) = B0[sin θ cos(ωt)ex +
sin θ sin(ωt)ey + cos θez ], where ω is angular frequency,
and θ is tilt angle between the z-axis and rotating mag-
netic field. This kind of magnetic field is used to pro-
duce pure spin current in a quantum dot system in ref-
erences [17,22]. We restrict this field so that there is no
magnetic flux threaded through the TCN. Another static
magnetic field B1 is applied in ez direction, which pro-
duces a static magnetic flux φ threaded through the TCN.
The static magnetic field B1 does not applied on the ring,
but only produces an Aharonov-Bohm magnetic flux. The
magnetic field B0(t) is screened in order not to affect the
leads. The side-coupled quantum dot is applied with a gate
voltage Vg to control the mesoscopic transport by tuning
Vg. The schematic diagram of this system is similar to Fig-
ure 1 in reference [19] to help understanding our geometric
structure, but there is no coupled QD in that paper. The
QD is a mesoscopic system, however, it can be served as a
mesoscopic electron reservoir, and electron can transport
between TCN and QD. If the chemical potentials between
the terminals and QD are not equal, the charge and spin
currents may exist in the terminals and QD. The rotating
field applies a magnetic field with maximum magnitude of
the field on the ring, and the magnetic field varies with the
angles θ, and ϕ(t) = ωt. At a definite time, the effective
field for electrons in the TCN is different site by site with
respect to θ due to the geometric structure of TCN [23].
The variation of the magnetic field ∆B0(t) is proportional
to ∆θ < dt/Dt � 1. Thus, the difference of magnetic field
on the TCN associated with θ can be neglected obviously
for our system. Generally, We apply a Zeeman field B2 on
the QD to serve as a magnetic controlling field, which is

Fig. 1. The differential conductance dI/dV versus source-
drain bias eV . The parameters are chosen as φ = 0, Vg =
0, B2 = 0, θ = π/3, N = 30. Diagram (a) is related to the
(7, 7; −160, 160) TCN as �ω = 0.01γ0; diagram (b) is related
to the (7, 0; −160, 320) TCN as �ω = 0; diagrams (c) and
(d) correspond to the (7, 7; −159, 159) TCN as �ω = 0, and
�ω = 0.01γ0, respectively.

not necessary to be supplied simultaneous with the other
fields. The Zeeman field B2 has different contributions
compared with the rotating magnetic field.

The central TCN is described by tight-binding Hamil-
tonian, and the two normal metal leads are described by
the free electron systems. The QD is relatively large char-
acterized by multi-level free electron model. We consider
the situation that the leads broaden immediately at the
connections to the TCN, and they are large enough to be
considered as equilibrium macroscopic electron reservoirs.
In the diagonal representation of TCN, the electronic
properties can be determined by the total Hamiltonian

H =
∑

kσ

∑

γ∈{L,R}
εγ,kσa†

γ,kσaγ,kσ +
∑

j�δσ

Eδ,j�(φ)c†δσ,j�cδσ,j�

+
∑

�σ

Ed,�σd†�σd�σ +
∑

j�δ

{
∑

σσ′
c†δσ,j�Ωσσ′(t)cδσ′,j�

+
∑

kσ

∑

γ∈{L,R}

[
R∗

γδ,j�(k)c†δσ,j�aγ,kσ + H.c.
]

+
∑

�′σ

[
T �′σ∗

δ,j� c†δσ,j�d�′σ + H.c.
]}

. (1)
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In the Hamiltonian (1), a†
γ,kσ (aγ,kσ), c†δσ,j� (cδσ,j�), and

d†�σ (d�σ) are the creation (annihilation) operators of elec-
trons in the two leads, TCN and QD respectively. Ed,�σ is
the energy level of QD defined by Ed,�σ = Ed� + eVg +
λσµB2. Here Rγδ,j�(k) is interaction strength of electrons
between the γth lead and TCN. The quantity T �′σ

δ,j� is
the interaction strength of electrons between the QD and
TCN. Ωσσ′ (t) are elements of the matrix Ω(t) in spin
space defined as

Ω(t) = µB0

(
cos θ, sin θ e−iωt

sin θ eiωt, − cos θ

)
, (2)

where µ = gµB/2 is magnetic moment of electron, µB is
the Bohr magneton, g is Lande factor which is approxi-
mately equal to 2. The energy of TCN is intimately as-
sociated with the structure of concrete TCN. The energy
level Eδ,j�(φ) of armchair TCN in the tight-binding ap-
proximation is given by [8]

Eδ,j�(φ) = δγ0

{
1 + 4 cos

(
πj

m

)
cos

[
π( + φ/φ0)

p

]

+4 cos2
[
π( + φ/φ0)

p

] }1/2

, (3)

and the energy level of the zigzag TCN in the tight-binding
approximation is given by

Eδ,j�(φ) = δγ0

{
1 + 4 cos

(
πj

m

)
cos

[
π( + φ/φ0)

p

]

+ 4 cos2
(

πj

m

) }1/2

, (4)

where j = 1, 2, ..., m;  = 1, 2, ..., 2p; δ = ±, γ0 = 3.033 eV,
and φ0 = h/e is the flux quantum. The upper half of
the energy dispersion curves describes the π∗-energy anti-
bonding band (unoccupied state), and the lower half of it
is the π-energy bonding band (occupied state). We take
the chemical potential of the right lead as the reference of
energy measurement to ensure µL − µR = eV , where V is
the voltage between the two leads.

In order to derive the tunnelling current by the non-
equilibrium Green’s function technique [24,25], we define
the retarded (advanced) Green’s function of the coupled
TCN as

G
r(a)
δj�,σσ′ (t, t′) = ∓ i

�
θ(±t ∓ t′)〈[cδσ,j�(t), c

†
δσ′,j�(t

′)]+〉,(5)

and the Keldysh Green’s function of the coupled TCN as

G<
δj�,σσ′ (t, t′) =

i

�
〈c†δσ′,j�(t

′)cδσ,j�(t)〉. (6)

The spin operator of a lead is defined by Ŝγ,µν =∑
k a†

γ,kµaγ,kνsµν , and the QD is Ŝd,µν =
∑

� d†�µd�νsµν ,
where sµν = �

2 σµν is the spin angular moment of elec-
tron. The spin current components are determined by the

continuity equation of the spin operator as ∂Ŝγ,µν/∂t +
Îγ,µν(t)sµν = 0 . The current components of the γth lead
are obtained by taking ensemble expectation and quantum
average to give

Iγ,µν(t) =
∑

�jδ

∫
dt1

{
Gr

δj�,νµ(t, t1)Σ<
γδ,j�µ(t1, t)

+ G<
δj�,νµ(t, t1)Σa

γδ,j�µ(t1, t) − [Σr
γδ,j�ν(t, t1)G<

δj�,νµ(t1, t)

+ Σ<
γδ,j�ν(t, t1)Ga

δj�,νµ(t1, t)]
}
, (7)

for γ ∈ {L, R, d}. This is a general expression for the
spin current components containing the diagonal and off-
diagonal elements in spin space. The diagonal elements in
spin space are related to charge transport, and spin trans-
port of the sz component. The off-diagonal current ele-
ments in spin space are associated with the spin transport
of sx and sy components. The self-energies ΣX

γδ,j�ν(t, t′)
signifies that ΣX

γδ,j�ν(t, t′) =
∑

k |Rγδ,j�(k)|2gX
γ,kν(t, t′) as

γ ∈ {L, R}, and ΣX
dδ,j�σ(t, t′) =

∑
�′ |T �′σ

δ,j�|2gX
d,�′σ(t, t′)

as γ = d, where gX
γ,kν(t, t′) and gX

d,�′σ(t, t′) are the iso-
lated Green’s functions of the leads and QD. The sym-
bol X ∈ {r, a, <} denotes the retarded, advanced, and
Keldysh Green’s functions and corresponding self-energies
of leads and QD. The spin current components can be ex-
pressed by the Fourier transformed Green’s functions and
self-energies as

Iγ,µν(t) =
1
h

∑

�jδ

∫
dε1dε2e

i
�

ε21t
{
Gr

δj�,νµ(ε1, ε2)Σ<
γδ,j�µ(ε2)

+ G<
δj�,νµ(ε1, ε2)Σa

γδ,j�µ(ε2) −
[
Σr

γδ,j�ν(ε1)G<
δj�,νµ(ε1, ε2)

+ Σ<
γδ,j�ν(ε1)Ga

δj�,νµ(ε1, ε2)
]}

, (8)

where ε21 = ε2 − ε1 and GX
δj�,νµ(ε1, ε2), (X ∈ {r, a, <}),

are the Fourier transformed retarded, advanced, and
Keldysh Green’s functions of the coupled TCN. ΣX

γδ,j�ν(ε)
are the Fourier transformed self-energies of ΣX

γδ,j�ν(t, t′)
determined by ΣX

γδ,j�ν(ε) =
∑

kγ |Rγδ,j�(k)|2gX
γ,kσ(ε),

and ΣX
dδ,j�σ(ε) =

∑
�′ |T �′σ

δ,j�|2gX
d,�′σ(ε) where gX

γ,kσ(ε) and
gX

d,�′σ(ε) are the Green’s functions of the γth lead and
QD, respectively. The retarded (advanced) and Keldysh
Green’s functions of leads are g

r(a)
γ,kσ(ε) = 1/[ε − εγ,kσ ±

iη],(η → +0), and g<
γ,kσ(ε) = 2πifγ(ε)δ(ε−εγ,kσ). The cor-

responding Green’s functions of the QD are determined by
g

r(a)
d,�σ(ε) = 1/[ε − Ed,�σ ± iη], and g<

d,�σ(ε) = 2πifd(ε)δ(ε −
Ed,�σ). The Fermi distribution function of the leads and
QD are given by fγ(ε) = 1/{exp[(ε − µγ)/KBT ] + 1},
for γ ∈ {L, R, d}, where KB is the Boltzmman con-
stant. The density of state (DOS) of the leads ργσ(ε) =∑

k δ(ε−εγ,kσ) can be expressed by a function with contin-
uous energy of the incident electrons. However, the DOS
of isolated QD is determined by its discrete energy levels
Ed,�σ as ρdσ(ε) =

∑
� δ(ε − Ed,�σ).
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From the Dyson-like equation, one can obtain the re-
tarded Green’s function in the Fourier space as

Gr
δj�,σσ′ (ε, ε′) = Gr

δj�,σσ(ε)[δ(ε − ε′)δσσ′

+ γ(θ)g̃r
δj�,σ̄σ̄(ε̃σ)δ(ε̃σ − ε′)δσ̄σ′ ], (9)

where g̃r
δj�,σσ(ε) = 1/[ε − εδj�,σ(θ) − Σ̃r

δj�,σ(ε)], and
εδj�,σ(θ) = Eδ,j�(φ) + λσµB0 cos θ. The self-energy
Σ̃r

δj�,σ(ε) of the coupled system is defined by the sum-
mation of Fourier transformed self-energies of leads and
quantum dot as Σ̃r

δj�,σ(ε) =
∑

γ∈{L,R,d} Σr
γδ,j�σ(ε). In the

formulas we have used the notations as γ(θ) = µB0 sin θ,
ε̃σ = ε − λσ�ω, where λσ is the eigenvalue of the Pauli
operator σz, for λ↑ = 1, λ↓ = −1. The diagonal elements
of the retarded Green’s function in spin space is derived
to be

Gr
δj�,σσ(ε) =

g̃r
δj�,σσ(ε)

1 − γ(θ)2g̃r
δj�,σσ(ε)g̃r

δj�,σ̄σ̄(ε̃σ)
. (10)

The second term in equation (9) contributes to the spin-
flip off-diagonal mesoscopic transport current compo-
nents. The diagonal elements of the Green’s function given
in equation (10) also contains the spin-flip effect which is
related to the term of γ(θ) in the denominator. As θ = 0
the system is associated with the situation that the rotat-
ing magnetic field reduces to the constant Zeeman field
B0 = B0ez applying to the TCN, and there is no spin-flip
effect.

The Keldysh Green’s function of the coupled TCN can
be derived similarly from the Dyson-like equation as

G<
δj�,σσ′ (ε, ε′) = Gr

δj�,σσ(ε)[Σ̃<
δj�,σ(ε)Ga

δj�,σσ′ (ε, ε′)

+ γ(θ)g̃r
δj�,σ̄σ̄(ε̃σ)Σ̃<

δj�,σ̄(ε̃σ)Ga
δj�,σ̄σ′(ε̃σ, ε′)]. (11)

Equation (9–11) contain all the information of the charge
and spin transport, such as the spin diagonal and spin off-
diagonal transport, the time-dependent situation caused
by the rotating field, and the resonant charge tunnelling
through the compound band structure of TCN-QD. The
explicit time-dependent current evolution is presented by
substituting the Green’s functions given in equations (9)
and (11) into equation (8). The Green’s functions can be
expressed generally in the form

GX
δj�,σσ′ (ε, ε′) = GX

δj�,σσ(ε)δ(ε − ε′)δσσ′

+ GX
δj�,σσ̄(ε)δ(ε̃σ − ε′)δσ̄σ′ (12)

to specify the spin diagonal and off-diagonal spin-flip ef-
fects. Note that the Green’s functions possess the relation

Gr
δj�,σ̄σ̄(ε̃σ)g̃r

δj�,σσ(ε) = Gr
δj�,σσ(ε)g̃r

δj�,σ̄σ̄(ε̃σ). (13)

This relation indicates the identity between the off-
diagonal elements of Green’s functions

GX
δj�,σ̄σ(ε̃σ) = GX

δj�,σσ̄(ε), (14)

for X ∈ {r, a, <}. Substituting equation (12) into equa-
tion (8), we arrive at the time-dependent spin current
components as

Iγ,σσ′(t) = Iγ,σσδσσ′ + Iγ,σ̄σe−iλσωtδσ̄σ′ . (15)

This presents that the spin diagonal transport components
are independent on time, while the spin off-diagonal trans-
port components oscillate with time.

The diagonal elements of the charge current is deter-
mined by summing up the spin-up and spin-down current
elements as Iγ = e(Iγ,↑↑+Iγ,↓↓), while the sz spin current
component is given by the difference of spin-down and
spin-up current components as Is

γ,z = �(Iγ,↓↓ − Iγ,↑↑)/2.
The off-diagonal elements of the spin current compo-
nents are associated with the sx and sy spin currents as
Is
γ,x = �(Iγ,↑↓ + Iγ,↓↑)/2, and Is

γ,y = i(Iγ,↓↑ − Iγ,↑↓)�/2,
respectively. This signifies that the spin currents Is

γ,x and
Is
γ,y oscillate sinusoidally with time, and they are zero by

taking time average. Therefore, only the Is
γ,z spin current

component is nonzero by taking time average. The charge
current and sz component spin current are determined by
the formula

Iγ,σσ = − 2
h

Im
∑

δ�j

∫
dεΓ σ

γδ,j�(ε)
[
fγ(ε)Gr

δj�,σσ(ε)

+
1
2
G<

δj�,σσ(ε)
]
, (16)

for γ ∈ {L, R, d}, which is proposed by Jauho, Wingreen,
and Meir on considering the spin degenerate system in
reference [24]. The line-widths of the γth lead and QD are
determined by Γ σ

γδ,j�(ε) = 2π
∑

k |Rγδ,j�(k)|2δ(ε − Eγ,kσ)
for γ ∈ {L, R}, and Γ σ

dδ,j�(ε) = 2π
∑

�′ |T �′σ
δ,j�|2δ(ε−Ed,�′σ)

for γ = d. The DOS of the isolated QD is determined by
the imaginary part of retarded Green’s function of QD as
ρdσ(ε) = −Im

∑
� gr

d,�σ(ε)/π.
From equation (16), one can derive charge current and

diagonal spin current elements associated with the follow-
ing formula explicitly

Iγ,σσ =
1
h

∑

�jδ

∑

γ′

∫
dε

{
T

(1)σσ
δj�,γγ′(ε)[fγ(ε) − fγ′(ε)]

+ T
(2)σσ̄
δj�,γγ′(ε)[fγ(ε) − fγ′(ε̃σ)]

}
, (17)

for γ, γ′ ∈ {L, R, d}. In the above current formula, we have
defined the transmission coefficients as

T
(1)σσ
δj�,γγ′(ε) = Γ σ

γδ,j�(ε)Γ
σ
γ′δ,j�(ε)|Gr

δj�,σσ(ε)|2,

T
(2)σσ′

δj�,γγ′(ε) = Γ σ
γδ,j�(ε)Γ

σ′
γ′δ,j�(ε̃σ)γ2(θ)

×|g̃r
δj�,σ̄σ̄(ε̃σ)|2|Gr

δj�,σσ(ε)|2. (18)

The transmission coefficient T
(1)σσ
δj�,γγ′(ε) is symmetric about

the terminals as T
(1)σσ
δj�,γγ′(ε) = T

(1)σσ
δj�,γ′γ(ε). Employing the

symmetry relation equation (13), we have the symmetry
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relation on the transmission coefficient as T
(2)σσ̄
δj�,γγ′(ε) =

T
(2)σ̄σ
δj�,γ′γ(ε̃σ). This is equivalent to the case that the electron

propagating with the spin-up and spin-down variables ↑↓
changes to the spin state ↓↑ due to the spin-flip effect as
the electron tunnels from one lead to the other. This spin
state transfer requires the absorption of photon energy
λσ�ω. For our system, the self-energy of QD

Σr
dδ,j�σ(ε) = βσ

δj�(ε) −
i

2
Γ σ

dδ,j�(ε) (19)

depends on its energy levels intimately. The DOS of QD
takes important role, and the wide-band limit is invalid.
For the situation that the coupling strengths are indepen-
dent on the energy levels between the TCN and QD T �′σ

δ,j� =
T , the self-energy Σr

dδ,j�σ(ε) can be expressed by the DOS
of QD through the line-width Γ σ

dδ,j�(ε) = 2π|T |2ρdσ(ε),
and the real part is settled by the principal value integral

βσ
δj�(ε) = |T |2

∫
ρdσ(ε1)

dε1
ε − ε1

. (20)

As the energy of electron satisfies the equation
wσ

δj�(ε) = γ2(θ), we achieve resonant transport
through the TCN-QD system, where we have defined
wσ

δj�(ε) = [ε − εδj�,σ − βσ
δj�(ε)][ε̃σ − εδj�,σ̄ − βσ̄

δj�(ε̃σ)] −∑
γγ′ Γ σ

γδ,j�(ε)Γ
σ̄
γ′δ,j�(ε̃σ)/4. The energy gap of an isolated

single-wall carbon nanotube is determined by its concrete
electronic structure, and it can be modified by the ap-
plied magnetic flux. By changing the magnetic flux, the
metal-semiconductor phase transition occurs [26]. Simi-
larly, as TCN is threaded with magnetic flux, energy gap
will be modified by the applied magnetic flux, and the
metal-semiconductor phase transition takes place [8]. In
the numerical calculations, we find that conducting prop-
erties are different from the original isolated metallic TCN
for the coupled TCN-QD systems, i.e., the isolated metal-
lic TCN becomes semiconducting TCN-QD system, and
the isolated semiconducting TCN becomes metallic TCN-
QD system. These phase transitions are caused by the
coupling of QD, by the magnetic flux threaded through
the TCN, as well as by the rotating magnetic field.

2.1 Charge current

For the charge current, Iγ = e
∑

σ Iγ,σσ, one observes the
current conversation is satisfied by summing up all of the
terminal currents to give

∑
γ Iγ = 0. This can be seen

explicitly by changing γ′ → γ, and using the symmetry
relation of T

(1)σσ
δj�,γγ′(ε) for the first term of equation (17).

But for the second term of equation (17), summation con-
tains spin-up and spin-down terms. However, we can shift
the integration variable by letting ε → ε̃σ in the second
term of the spin-down current component. Employing the
symmetry relation of T

(2)σσ̄
δj�,γγ′(ε), and then changing the

terminal notations as γγ′ → γ′γ, one observes that the
second term in equation (17) is exactly zero. Therefore,
the conservation holds in our multi-terminal system. The

charge current of γth terminal is given by the generalized
spin-dependent Landauer-Büttiker formula

Iγ =
e

h

∑

�jδ

∑

γ′

∫
dε

{
∑

σ

T
(1)σσ
δj�,γγ′(ε)[fγ(ε) − fγ′(ε)]

+ T
(2)↑↓
δj�,γγ′(ε)[fγ(ε) − fγ′(ε̃↑)]

+ T
(2)↑↓
δj�,γ′γ(ε)[fγ(ε̃↑) − fγ′(ε)]

}
. (21)

We observe that the charge current is nonzero in the pres-
ence of rotating magnetic field even if µγ = µγ′ , (for
γ �= γ′), since T

(2)↑↓
δj�,γγ′(ε) �= T

(2)↑↓
δj�,γ′γ(ε) generally. This is

equivalent to the case that the rotating magnetic field
causes spin-flip, and it pumps the electrons to different
terminals. The different properties of terminals cause net
charge current. If we replace QD as a normal metal ter-
minal, and take the wide-band limit in the terminals, i.e.,
Σr

γδ,j�σ(ε) = −iΓγ/2, the line-widths are independent on
energy levels, and the charge current is zero Iγ = 0 as
µγ = µγ′ [17]. The photon pumping effect can be observed
explicitly at zero temperature, where the Fermi distribu-
tion function becomes step function. We denote the chem-
ical differences as µL−µR = eV and µL−µd = eVd. In or-
der to present main physical feature of spin-flip transport
and photon pumping effect, we keep µL = µd and take µR

as the measurement point by setting µR = 0. Therefore,
the charge current tunnelling from the left terminal to the
central region is determined by the formula

IL =
e

h

∑

�jδ

{∫ eV

�ω

dε[T (2)↑↓
δj�,LR(ε) + T

(2)↑↓
δj�,Ld(ε)]

+
∫ eV +�ω

0

dε[T (2)↑↓
δj�,RL(ε) + T

(2)↑↓
δj�,dL(ε)]

+
∑

σ

∫ eV

0

dεT
(1)σσ
δj�,LR(ε)

}
. (22)

As the source-drain bias eV = 0, by taking wide-band
limit for the left and right leads, we obtain the pumping
charge current

IL =
e

h

∑

�jδ

∫
�ω

0

dε
[
T

(2)↑↓
δj�,dL(ε) − T

(2)↑↓
δj�,Ld(ε)

]
. (23)

This pumping charge current is expressed in explicit form
by substituting the transmission coefficient shown in equa-
tion (18) to be associated with the quantity determined by
the difference of line-width of QD as Γ̃δ,j�(ε) = Γ ↑

dδ,j�(ε)−
Γ ↓

dδ,j�(ε̃↑). The difference of line-width Γ̃dδ,j�(ε) is nonzero
generally, since Γ σ

dδ,j�(ε) is dependent on spin variable,
and it is modified by the photon energy λσ�ω. However,
the numerical calculation shows that the pumped charge
current is very small except several definite points of fre-
quency.
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2.2 Spin current

We consider the zero biased terminals µγ′ = µγ , where
γ, γ′ ∈ {L, R, d}, in order to investigate the spin current
induced by the rotating magnetic field. The sz spin current
component in the γth lead is determined by employing
equation (17) to give

Is
γ,z =

1
4π

∑

�jδ

∑

γ′

∫
dε

{
T

(2)↑↓
δj�,γ′γ(ε)[fγ(ε̃↑) − fγ′(ε)]

− T
(2)↑↓
δj�,γγ′(ε)[fγ(ε) − fγ′(ε̃↑)]

}
. (24)

The zero temperature sz spin current component takes
the form as follows in the wide-band limit for the left and
right leads as

Is
L,z =

1
2π

∑

�jδ

∫
�ω

0

dεΓLΓ̃δ,j�(ε)γ2(θ)

× |g̃r
δj�,↓↓(ε̃↑)|2|Gr

δj�,↑↑(ε)|2, (25)

where Γ̃δ,j�(ε) is defined by the summation of the terminal
line-widths as Γ̃δ,j�(ε) = ΓL+ΓR+ 1

2 [Γ ↑
dδ,j�(ε)+Γ ↓

dδ,j�(ε̃↑)].
This formula shows that the rotating magnetic field may
generate spin current as the photon energy of the system
satisfies the condition as �ω > Eg(φ)/2, where Eg(φ) is
the energy gap of TCN-QD system.

The sx and sy components of spin current are deter-
mined by

Is
γ,x = Iγ(1) sin(ωt) + Iγ(2) cos(ωt), (26)

Is
γ,y = Iγ(2) sin(ωt) − Iγ(1) cos(ωt), (27)

where the magnitudes of the spin current above are deter-
mined by the off-diagonal Green’s functions. The quantity
Iγ(2) is a complex function which contains real and imag-
inary parts. The imaginary part of the spin current is in-
duced by the polarization procedure due to the spin flip,
and it can be referred as the polarization spin current.
The real part of the spin current is the tunnelling spin
current which consumes energy in order to produce work.
The spin currents Is

γ,x and Is
γ,y evolve with time possessing

π/2 phase difference, i.e., Is
γ,y(ωt + π/2) = Is

γ,x(ωt).

3 Numerical calculation

We consider the wide-band limit for the normal metal
leads, and we assume that the tunnelling electrons possess
equal coupling strength between the leads and TCN. This
means the line-widths of leads are energy-independent
ΓL = ΓR = Γ , which presents main behaviors of meso-
scopic transport. In the numerical calculations, we take
parameters as Γ = 3.033 meV, T = 3.033 meV, and
µB0 = 0.05γ0,(B0 ≈ 2.6 × 103 T). The QD is as-
sumed to possess multiple levels with equal level spacing
∆Ed� = ∆0, ( = 0,±1,±, 2, ...N ), where ∆0 = 0.025γ0,

and ν = γ0/h ≈ 7.3614 Hz. We only deal with the zero-
temperature systems which can provide obvious quantum
effects. We drop the terminal label γ = L in the following
figures for current labelling.

Figure 1 shows the differential conductance with re-
spect to the source-drain bias eV for different TCN-QD
systems. We set the external parameters φ, Vg, B2 to be
zero to study the conductance structure related to the
material and applied rotating magnetic field B0. Diagram
(a) displays the conductance structure of the type II (7,
7; −160, 160) TCN in the presence of a rotating magnetic
field. For the isolated type II TCN, it exhibits semicon-
ducting properties in the absence of external field. How-
ever, for our compound system, the DOS of QD con-
tributes additional levels for electron to tunnel. Further
more, the rotating magnetic field also induces novel lev-
els due to the spin splitting and photon absorption pro-
cedures. This is equivalent to the situation that the sys-
tem experiences a semiconductor-metal phase transition.
Therefore, one observes that the mesoscopic system ex-
hibits metal feature of resonant differential conductance.
Diagram (b) is the differential conductance of the type III
TCN system as �ω = 0. The system displays the semi-
conducting behavior with large energy gap Eg ≈ 1.21 eV.
This indicates that the type III TCN system is a semi-
conductor even if it is coupled by a QD with multi-levels
as eVg = 0, φ = 0, and B2 = 0. This behavior is caused
due to the large energy gap, and the DOS of QD can not
induce additional energy levels to bridge the energy gap.
Diagrams (c) and (d) are associated with the type I (7, 7;
−159, 159) TCN system. One observes that as �ω = 0, the
system displays the semiconducting structure with narrow
energy gap Eg ≈ 60 meV. This energy gap is caused by the
coupling of QD, since the isolated TCN in the absence of
external magnetic field possesses the metallic feature. The
conductance resonant peaks are modified as the photon
energy is nonzero shown in diagram (d). The suppression
and enhancement of resonant peaks are observed due to
the rotating magnetic field. However, it still exhibits the
semiconducting behavior since the conductance is zero at
eV = 0.

We present the differential conductance versus the
photon energy �ω of the rotating magnetic field in Fig-
ure 2. The resonant structures of conductance are ob-
served, which is strongly associated with the DOS of the
coupled system. Diagram (a) represents the metallic fea-
ture with zero energy gap Eg = 0 for the type II (7,
7; −160, 160) TCN system, and the photon absorption
can cause pumping current even if V = 0. In addition
to the nature of microstructure of the TCN-QD system,
the differential conductance is contributed intimately by
the photon absorption and spin-flip effects originated from
the rotating magnetic field. We depict the differential con-
ductance of the type III (7,0;-160,320) TCN system in
diagram (b). The semiconducting behavior of the com-
pound system is still observed due to measuring the con-
ductance versus applied photon energy �ω. The conduc-
tance is non-zero only as the photon energy is large enough
as �ω > 0.667 eV.
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Fig. 2. The differential conductance dI/dV versus photon en-
ergy �ω of the rotating magnetic field. The parameters are
chosen as φ = 0, Vg = 0, B2 = 0, θ = π/3, V = 0, N = 30.
Diagrams (a) and (b) are associated with the (7, 7; −160, 160)
and (7, 0; −160, 320) TCNs, respectively.

Fig. 3. The differential conductance dI/dV versus magnetic
flux φ. The parameters are chosen as Vg = 0, B2 = 0, θ =
π/3, �ω = 0.01γ0, N = 30. The dotted and solid curves are
associated with the (7, 7; −159, 159) and (7, 7; −160, 160)
TCNs. Diagrams (a) and (b) are related to the conductance at
V = 0 and eV = 0.01γ0, respectively.

We display the oscillation of differential conductance
with respect to the magnetic flux φ in Figure 3, which
is associated with the Aharonov-Bohm effect. The dotted
and solid curves are related to the type I (7, 7; −159, 159)
and type II (7, 7; −160, 160) TCNs, respectively. The pe-
riodic oscillation with the period φ0 is observed, and the
conductance satisfies the relation of even function of φ as
usual. However, the magnitude and oscillation structures
are strongly dependent on the detailed structure of TCN
and the applied source-drain voltage V . As V = 0, the
magnitude of dI/dV for the (7, 7; −160, 160) TCN-QD
system is about 0.3 e2/h, and there contains four reso-

Fig. 4. The differential conductance dI/dV versus gate voltage
Vg. The parameters are chosen as φ = 0, B2 = 0, θ = π/3, V =
0, N = 30. Diagram (a) corresponds to the (7, 7; −160, 160)
TCN as �ω = 0.01γ0. Diagram (b) corresponds to the (7, 0;
−160, 320) TCN as �ω = 0.

nant peaks in a period shown in diagram (a). But for the
(7, 7; −159, 159) TCN-QD system, one observes that the
magnitude of conductance is 0.5 e2/h, while there exist
two resonant peaks in a period. The oscillation structures
are quite different when the source-drain bias is applied
as eV = 0.01γ0 shown in diagram (b). The cluster oscil-
lations are exhibited to contain three peaks in a period
for the type I TCN system, but it contains six peaks in a
cluster for the type II TCN system.

The differential conductance is adjusted by the gate
voltage Vg shown in Figure 4 for the type II (7, 7; −160,
160) and type III (7, 0; −160, 320) TCN-QD systems.
The Fano type of multi-resonant behaviors are displayed
in diagram (a), and the reverse resonance structure is ob-
served in diagram (b). For the differential conductance of
the type II (7, 7; −160, 160) TCN-QD, several resonant
peaks with different heights are located on each of the
conductance plateaus. The plateau conductance possess
the height as about 0.4 e2/h and the width eVg = 0.05γ0.
This width is not equal to the level spacing of the QD
as ∆0 = 0.025γ0 stated before. This signifies that the
microstructure of the TCN-QD system possesses its spe-
cific transport properties different from the separated sub-
systems. The rotating magnetic field induces asymmet-
ric tunnelling behaviors due to the spin-flip effect, and
the charge conductance is strongly affected by it. For the
type III (7, 0; −160, 320) TCN-QD system, the differen-
tial conductance is suppressed completely from about 0.01
e2/h at definite values of gate voltage. This implies that
for the semiconducting system, the conductance exhibits
constant value in large regimes of the gate voltage. The
width of each conductance rectangle is about 0.15 γ0. The
conductance is naturally originated from the combination
of compound system.

As the QD is applied with Zeeman field B2, the levels
of QD is split to form non-degenerate QD system, and the
electronic transport for the coupled TCN-QD system is



432 The European Physical Journal B

Fig. 5. The differential conductance dI/dV versus the Zeeman
energy µB2. The parameters are chosen as φ = 0, θ = π/3, V =
0, Vg = 0, �ω = 0.01γ0, N=30. Diagrams (a) and (b) corre-
spond to the (7, 7; −160, 160) and (7, 7; −159, 159) TCNs,
respectively.

contributed by the spin-flip TCN and spin split QD sub-
systems, as well as by the combination of the compound
structure. We can control the charge transport by varying
the magnitude of B2 to obtain desired conductance exhib-
ited in Figure 5 for the type I and II TCN-QD systems.
The Fano resonant conductance structures are observed
for the two systems associated with (7, 7; −160, 160) and
(7, 7; −159, 159)TCNs shown in diagrams (a) and (b),
respectively. The magnitudes of the type II conductance
fluctuates around 0.4 e2/h, and it can be suppressed com-
pletely by varying the Zeeman field B2. But for the type
I TCN, the maximum magnitude of conductance is 0.12
e2/h, and the conductance fluctuates around 0.09 e2/h.
The conductance of this type system can also be sup-
pressed completely by varying the Zeeman field B2. One
can see that the suppressions of the conductance takes
place with the separation µB2 = 0.075γ0 for both of the
systems. Compared with the conductance shown in Fig-
ure 4, we find that the conductance possesses different
controlling behaviors with respect to eVg and µB2.

Figure 6 shows the charge and spin currents I and Is
z

in the presence of rotating magnetic field with photon en-
ergy �ω = 0.01γ0. The charge current is depicted as the
source-drain bias eV = 0.03γ0, and the spin current is
shown as eV = 0. The charge and spin currents oscillate
with φ showing different oscillation structures for the type
I and II TCN-QD systems. The main peaks and valleys of
the currents are located at the same place for the two sys-
tems, and cluster-peak oscillation structures are seen. For
the charge current, one observes that the current of the
type I TCN-QD system varies with φ smoothly. The larger
oscillation wave is embedded with smaller peak oscillation,
while for the type II TCN-QD system, multi-peaks are lo-
cated on the main current oscillation plateaus. The spin
current oscillates also smoothly for the type I TCN-QD
system with two peaks appearing in a period φ0. For the
type II TCN-QD system, a main spin current peak is ac-
companied with two side peaks.

Fig. 6. The charge and spin currents versus magnetic flux φ.
The parameters are chosen as θ = π/3, B2 = 0, Vg = 0, �ω =
0.01γ0, N = 2. Diagram (a) is the charge current scaled by
eΓ/h as the source-drain bias eV = 0.03γ0, while diagram (b)
is the spin current Is

z scaled by 10−2Γ/(2π) in the absence
of the source-drain bias eV = 0. The solid and dotted curves
are associated with (7, 7; −74, 74) and (7, 7; −75, 75) TCNs,
respectively.

Figure 7 exhibits the spin current Is
z versus the pho-

ton energy �ω of rotating magnetic field. The solid curve
is related to type II (7, 7; −74, 74) TCN-QD system,
which possesses metal-like behavior since the spin cur-
rent occurs in the presence of nonzero photon energy. This
signifies that the spin current can be induced by apply-
ing a rotating magnetic field. A step appears at about
0.035γ0, and a peak at 0.06γ0. As the photon energy in-
creases to 0.08γ0, the spin current increases rapidly. The
dotted curve represents the spin current of type I (7, 7;
−75, 75) TCN-QD system which contains energy thresh-
old Eg/2 ≈ 0.05γ0. In order to obtain spin current Is

z obvi-
ously, we must apply the rotating magnetic field with pho-
ton energy �ω > 0.05γ0. This procedure is equivalent to
the case that the electrons tunnelling from the electrodes
absorbing photon energy which is greater than 0.152 eV
can overcome the energy threshold to form spin current.
The resonant peak occurred at �ω ≈ 0.6γ0 reflects the
nonlinear quantum structure.

The spin transport is strongly related to the tilt angle
of magnetic field with respect to the z-axis stated as θ. It
is directly seen that as θ = nπ, (n = 0, 1, 2, ...), the spin-
flip effect disappears due to γ(θ) = 0 at these points. This
means that the spin current is zero as θ = nπ. However, we
can not observe directly the variation of spin current asso-
ciated with θ in the regime 0 < |θ| < π from the formulas,
since the spin transport is dependent on θ completely re-
lated to the detailed microstructure of the system. We
display the spin current Is

z versus θ in Figure 8 to show
the variation of spin current. Two resonant peaks emerge
at about θ = ±0.2π for both of the (7, 7; −74, 74) and (7,
7; −75, 75) TCN-QD systems. But for the (7, 7; −75, 75)
TCN-QD system, there exhibits two side peaks at about
θ = ±0.35π. The main peaks of this type system are sup-
pressed by comparing with the type II TCN-QD system.
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Fig. 7. The spin current Is
z versus photon energy �ω. The

parameters are chosen as θ = π/3, B2 = 0, Vg = 0, φ = 0, V =
0, N = 2. The solid and dotted curves are related to the (7, 7;
−74, 74) and (7, 7; −75, 75) TCNs, respectively.

Fig. 8. The spin current Is
z versus the magnetic tilt angle θ.

The parameters are chosen as Vg = 0, B2 = 0, V = 0, φ =
0, �ω = 0.06γ0,N = 2. The dotted and solid curves are related
to the (7, 7; −74, 74) and (7, 7; −75, 75) TCNs, respectively.

This also indicates that the type II TCN-QD system can
provide larger spin current, while the type I TCN-QD sys-
tem can provide more detailed transport behaviors.

4 Concluding remark

The microstructure of TCN-QD system possesses its
specific transport properties different from the separated
sub-systems. The differential conductance is contributed
intimately by the photon absorption and spin-flip effects
originated from the rotating magnetic field. The magni-
tude and oscillation structures are strongly dependent on
the detailed structure of TCN and the applied source-
drain voltage V . The Fano type of multi-resonant behav-
iors are displayed in the conductance structures by adjust-
ing the gate voltage Vg and the Zeeman field B2 applied
on the QD. The reverse resonance structure versus gate
voltage is also exhibited in the large energy gap semi-
conducting system. The rotating magnetic field induces

asymmetric tunnelling behaviors due to the spin-flip ef-
fect, and the charge conductance is strongly affected by
it. The conductance possesses different controlling behav-
iors with respect to eVg and µB2. The spin transport is
strongly related to the tilt angle of magnetic field θ. The
spin current displays quite different structures compared
with different TCN-QD systems.
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